Wednesday, April 16, 2014

sun

32º F (0º C)

FEST Award Promotes Innovative Nanoelectronics Research

May 27, 2008 — Avik Ghosh, assistant professor of electrical and computer engineering at the University of Virginia, recently won an internal Fund for Excellence in Science and Technology Distinguished Young Investigator Grant for a research proposal that could ultimately transform transistor technology.

Transistors are tiny devices that control electric current and voltage. Considered a pivotal invention of the 20th century, they are a key component of computer chips as well as most other modern electronic devices. Currently available transistors are comprised of silicon, but the demand for smaller and more powerful electronic gadgets has uncovered the limitations of silicon transistor technology, including problems with heat dissipation and processing speed.

Enter Ghosh, who specializes in evaluating the properties of materials at the nanoscale by using high-powered computational techniques and physics. Ghosh notes that researchers have been working for years to scale down transistors and make them faster, cheaper and more reliable. One approach to this challenge involves the exploration of new materials.

One of the most recent materials to show theoretical promise is the graphene nanoribbon — a ribbony layer of graphite that is only an atom thick. Ghosh's FEST-backed research will explore the properties of graphene nanoribbons to determine whether they may consistently provide advantages in electrical conductivity that would rival silicon. Initial research has shown that graphene nanoribbons may enable devices with superior electrical properties, potentially resulting in transistors that are intrinsically much faster than those that are currently available.

Ghosh's expertise is in modeling and simulation on the atomic scale, and he has already established both internal and external collaborations in physics, chemistry and materials science to assist with his ambitious research. "Our group is theoretical, but we partner with experimentalists who are trying to build devices," said Ghosh. "We need experiments both to benchmark our theories and to test our predictions."

With the FEST funding, Ghosh will be able to hire a graduate student for a year to get the initial results and proof of concept to establish the capabilities of graphene-based devices and a fuller understanding of their advantages and disadvantages. Ghosh's goal is to be able to pattern an entire circuit out of graphene, using a combination of existing practices and new techniques.

Research on graphene-based devices has gained momentum of late, but Ghosh believes his holistic, interdisciplinary approach, which is focused on electronics applications, makes his work stand out from the rest. "What's unique about us is that we are actually partnering with experimentalists and the circuit theorists and trying to get a total story about graphene, not just a piecemeal part of the story," he said.

The FEST Distinguished Young Investigator Grant Program is administered by U.Va.'s Office of the Vice President for Research and Graduate Studies and supports junior faculty research in the sciences, engineering and medicine.

More information about Ghosh's work and other related research can be found on the Virginia nano-computing Web site (http://www.ece.virginia.edu/vino/home.html).

Media Contact:

Find us Online

facebook twitter googleplus youtube itunes

UVA Today Daily Report

A daily email compiling the best content from UVA Today and University news from around the Web.

RSS Feed

Subscribe to real-time updates from UVA Today.

Subscribe to SyndicateUVA Today News Feed

More Feeds