Sept. 17, 2007 -- Two University of Virginia School of Medicine researchers have been awarded grants from the National Institute of Allergy and Infectious Diseases to develop treatments and tests for some rapidly emerging trouble spots in the area of gastrointestinal diseases.
Under these grants, one scientist plans to develop a single test to identify more than 20 different food and waterborne pathogens, while a second scientist will create a single treatment that could protect people from becoming infected with more than 20 potential pathogens.
These pathogens have become well known to the general public in recent years, most notably from cases of E. coli bacteria infecting the food supply. In 2006, three people died and hundreds more were sickened after eating E. coli-contaminated spinach. Possibly the best-known modern case of large-scale public infection occurred in Milwaukee in 1993. That year, more than 400,000 residents were sickened by Cryptosporidium parvum, a parasite that infiltrated the city's water supply. More than 100 people died as a result.
"Detecting an outbreak of E. coli in the food supply or cryptosporidium in the water supply as quickly as possible is vital if we are going to ensure the safety of what we eat and drink," says Dr. Eric Houpt, associate professor of medicine at the U.Va. School of Medicine. "The challenge is developing one test for the most common pathogens, as opposed to just one test for one pathogen."
Houpt will lead the team of researchers in developing the test, which includes scientists from Michigan State University, the Commonwealth of Virginia Division of Consolidated Laboratory Services, Kilimanjaro Christian Medical Center in Tanzania and the private sector. The resulting diagnostic test could then be deployed to medical settings such as hospitals, clinics or field sites.
Dr. Paul Hoffman, professor of medicine at U.Va., is using his $2.6 million grant to develop second-generation antiparasitic/antibacterial therapeutics to treat infections caused by Giardia, Cryptosporidium, Campylobacter, Entamoeba and Clostridium difficile.
"These are all very nasty parasites to pick up and for many people, especially people with weaker immune systems, they can prove fatal because of the debilitating diarrhea associated with infection," Hoffman says.
Working with pharmaceutical companies and University of Virginia professor of chemistry Timothy Macdonald, Hoffman's team plans to exploit a novel drug target common in parasites and certain bacteria by chemically modifying available drugs to improve their efficacy and expand the conditions they can treat.
"If we can put this medication in a single pill, we can prevent people from becoming ill from these parasites before they are exposed and treat them if they have been infected," Hoffman says. "This could be used in preparation for a natural disaster where we know there will be parasitic outbreaks, or in response to a bioterrorism event."
Houpt and Hoffman are optimistic the test and the treatment could be ready for testing within three years.
Under these grants, one scientist plans to develop a single test to identify more than 20 different food and waterborne pathogens, while a second scientist will create a single treatment that could protect people from becoming infected with more than 20 potential pathogens.
These pathogens have become well known to the general public in recent years, most notably from cases of E. coli bacteria infecting the food supply. In 2006, three people died and hundreds more were sickened after eating E. coli-contaminated spinach. Possibly the best-known modern case of large-scale public infection occurred in Milwaukee in 1993. That year, more than 400,000 residents were sickened by Cryptosporidium parvum, a parasite that infiltrated the city's water supply. More than 100 people died as a result.
"Detecting an outbreak of E. coli in the food supply or cryptosporidium in the water supply as quickly as possible is vital if we are going to ensure the safety of what we eat and drink," says Dr. Eric Houpt, associate professor of medicine at the U.Va. School of Medicine. "The challenge is developing one test for the most common pathogens, as opposed to just one test for one pathogen."
Houpt will lead the team of researchers in developing the test, which includes scientists from Michigan State University, the Commonwealth of Virginia Division of Consolidated Laboratory Services, Kilimanjaro Christian Medical Center in Tanzania and the private sector. The resulting diagnostic test could then be deployed to medical settings such as hospitals, clinics or field sites.
Dr. Paul Hoffman, professor of medicine at U.Va., is using his $2.6 million grant to develop second-generation antiparasitic/antibacterial therapeutics to treat infections caused by Giardia, Cryptosporidium, Campylobacter, Entamoeba and Clostridium difficile.
"These are all very nasty parasites to pick up and for many people, especially people with weaker immune systems, they can prove fatal because of the debilitating diarrhea associated with infection," Hoffman says.
Working with pharmaceutical companies and University of Virginia professor of chemistry Timothy Macdonald, Hoffman's team plans to exploit a novel drug target common in parasites and certain bacteria by chemically modifying available drugs to improve their efficacy and expand the conditions they can treat.
"If we can put this medication in a single pill, we can prevent people from becoming ill from these parasites before they are exposed and treat them if they have been infected," Hoffman says. "This could be used in preparation for a natural disaster where we know there will be parasitic outbreaks, or in response to a bioterrorism event."
Houpt and Hoffman are optimistic the test and the treatment could be ready for testing within three years.
Media Contact
Article Information
September 17, 2007
/content/uva-infectious-disease-researchers-awarded-52-million-nih-develop-tests-and-treatments